Endothelial barrier stabilization by a cyclic tandem peptide targeting VE-cadherin transinteraction in vitro and in vivo.
نویسندگان
چکیده
Inflammatory stimuli result in vascular leakage with potentially life threatening consequences. As a key barrier component, loss of vascular endothelial (VE-) cadherin-mediated adhesion often precedes endothelial breakdown. This study aimed to stabilize VE-cadherin transinteraction and endothelial barrier function using peptides targeting the VE-cadherin adhesive interface. After modelling the transinteracting VE-cadherin structure, an inhibiting single peptide (SP) against a VE-cadherin binding pocket was selected, which specifically blocked VE-cadherin transinteraction as analyzed by single molecule atomic force microscopy (AFM). The tandem peptide (TP) consisting of two SP sequences in tandem was designed to strengthen VE-cadherin adhesion by simultaneously binding and cross-bridging two interacting cadherin molecules. Indeed, in AFM experiments TP specifically rendered VE-cadherin transinteraction resistant against an inhibitory monoclonal antibody. Moreover, TP reduced VE-cadherin lateral mobility and enhanced binding of VE-cadherin-coated microbeads to cultured endothelial cells, but acted independently of the actin cytoskeleton. TP also stabilized endothelial barrier properties against the Ca(2+) ionophore A23187 and the inhibitory antibody. Finally, TP abolished endothelial permeability increase induced by tumour necrosis factor-alpha in microperfused venules in vivo. Stabilization of VE-cadherin adhesion by cross-bridging peptides may therefore be a novel therapeutic approach for the treatment of vascular hyperpermeability.
منابع مشابه
PKA Compartmentalization via AKAP220 and AKAP12 Contributes to Endothelial Barrier Regulation
cAMP-mediated PKA signaling is the main known pathway involved in maintenance of the endothelial barrier. Tight regulation of PKA function can be achieved by discrete compartmentalization of the enzyme via physical interaction with A-kinase anchoring proteins (AKAPs). Here, we investigated the role of AKAPs 220 and 12 in endothelial barrier regulation. Analysis of human and mouse microvascular ...
متن کاملInterfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin
Vascular endothelial (VE)-protein tyrosine phosphatase (PTP) associates with VE-cadherin, thereby supporting its adhesive activity and endothelial junction integrity. VE-PTP also associates with Tie-2, dampening the tyrosine kinase activity of this receptor that can support stabilization of endothelial junctions. Here, we have analyzed how interference with VE-PTP affects the stability of endot...
متن کاملVascular Endothelial-Cadherin Stabilizes at Cell–Cell Junctions by Anchoring to Circumferential Actin Bundles through α- and β-Catenins in Cyclic AMP-Epac-Rap1 Signal-activated Endothelial Cells
Vascular endothelial (VE)-cadherin is a cell-cell adhesion molecule involved in endothelial barrier functions. Previously, we reported that cAMP-Epac-Rap1 signal enhances VE-cadherin-dependent cell adhesion. Here, we further scrutinized how cAMP-Epac-Rap1 pathway promotes stabilization of VE-cadherin at the cell-cell contacts. Forskolin induced circumferential actin bundling and accumulation of...
متن کاملSphingosine 1-phosphate rapidly increases endothelial barrier function independently of VE-cadherin but requires cell spreading and Rho kinase.
Sphingosine 1-phosphate (S1P) rapidly increases endothelial barrier function and induces the assembly of the adherens junction proteins vascular endothelial (VE)-cadherin and catenins. Since VE-cadherin contributes to the stabilization of the endothelial barrier, we determined whether the rapid, barrier-enhancing activity of S1P requires VE-cadherin. Ca(2+)-dependent, homophilic VE-cadherin bin...
متن کاملEvidence of a common mechanism of disassembly of adherens junctions through Gα13 targeting of VE-cadherin
The heterotrimeric G protein Gα13 transduces signals from G protein-coupled receptors (GPCRs) to induce cell spreading, differentiation, migration, and cell polarity. Here, we describe a novel GPCR-independent function of Gα13 in regulating the stability of endothelial cell adherens junctions (AJs). We observed that the oxidant H2O2, which is released in response to multiple proinflammatory med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 122 Pt 10 شماره
صفحات -
تاریخ انتشار 2009